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Abstract 

 
Quantifying economic uncertainty, i.e. an environment in which little or nothing is 

known about the future state of the economy, poses a challenge to both market 

participants and public authorities since it is not observable, but rather latent variable. 

In spite of this, it is possible to measure it indirectly through standard deviation of 

stock returns and implied volatility obtained from option prices. However, option 

prices may reveal considerable information beyond implied volatility, i.e. a set of 

option prices with the same maturity but with different exercise prices can be used to 

extract the entire implied probability distribution of the underlying asset at the 

expiration date. Implied probability distribution is risk-neutral according to the 

absence of arbitrage, i.e. the prices of options are not affected by degree of risk 

aversion among investors. The models for estimating risk-neutral density (RND) can 

be divided into two main categories: structural and nonstructural. The purpose of this 

paper is to extract market expectations from option prices and to investigate which of 

the proposed nonstructural models for estimating RNDs give the best fit. Namely, 

mixture of two log-normals, Edgeworth expansions and Shimko’s model, i.e. 

representatives of parametric, semiparametric and nonparametric approaches 

respectively, will be compared. The model that fits sample data better than others is 

used to describe different characteristics (moments) of the ex ante probability 

distribution. The sample covers one-year data for DAX index options from July, 15th 

2014 to July, 15th 2015. The results are compared through models and different 

maturity horizons.  
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Introduction 

 

Economic uncertainty refers to an environment in which little or nothing is known 

about the future state of the economy (Bloom et al, 2013). It poses a challenge to both 

market participants and public authorities in quantifying uncertainty, since it is not 

observable, but rather latent variable. However, it is possible to measure it indirectly. 

Some of the market based measures include standard deviation of stock returns and 

implied volatility obtained by option prices. Therefore, extracting information from 

financial prices is essential to gauge the uncertainty. Market participants, both small 

individual investors and big institutional investors, are interested in forecasting future 

volatility, since it is an important variable in portfolio management. Public authorities, 

especially central banks, are interested in understanding market expectations 

concerning future developments of various financial and monetary variables such as 

stock prices, exchange rate, interest rate and inflation. Central banks use information 

from market expectations when formulating and implementing monetary policy. 

Therefore, derivatives markets, especially futures and option prices, provide a rich 

source of information for gauging the market sentiment due to their forward-looking 

nature. 

Most commonly, market expectations of future interest rates, for instance, have 

been extracted from the term structure of interest rates or from futures contracts on 

money-market instruments and bonds (Vähämaa, 2005). However, these measures 

reflect only central expectations, and hence provide no indication about the dispersion 

of market expectations, i.e. they do not provide market’s assessment of the level of 

uncertainty, nor the asymmetries in the risk assessment. Moreover, an estimate of the 

standard deviation, as a risk measure, is obtained from data on stock returns however 

observations over several months are required if the skewness and kurtosis are to be 

measured accurately (Gemmill and Saflekos, 2006). Consequently, the focus has 

recently started to shift to information contained in option prices. Extracted 

information is mostly concentrated on implied volatility, i.e. volatility computed from 

a certain option pricing model. For example, one can invert Black-Sholes option 

pricing model to extract implied volatility using observable option prices in the 

market. Implied volatility obtained from option prices is considered to be a useful 

forward-looking measure of market uncertainty, and is therefore widely used among 

market participants and public authorities to assess the uncertainty surrounding central 

expectations. However, option prices may reveal considerable information beyond 

implied volatility (Vähämaa, 2005), i.e. a set of option prices with the same maturity 

but with different exercise prices can be used to extract the entire probability 

distribution of the underlying asset price at the maturity of the option. Therefore, in 

this paper the option prices are used to assess the so called “implied probability 

distribution”. The result is the ex ante probability distribution that market participants 

would have expected if they were risk neutral. This means that the estimated implied 

probability distribution does not take into account the degree of risk aversion of 

investors. The risk-neutral probability distribution and the associated risk-neutral 

density function (RND) can describe different characteristics (moments) of the ex 

ante probability distribution, which includes mean, standard deviation, skewness and 

kurtosis. The implied probability distribution can be interpreted as the market 

assessment of the future probability distribution for the underlying asset on which the 

options are issued (Aguilar and Hördahl, 1999), where the variations over time in the 



implied moments provide a good indication of changes in the market’s assessment of 

future developments in the underlying asset. 

All of the techniques for estimating RND functions from option prices are related 

to the result of Breeden and Litzenberger (1978) and Banz and Miller (1978). They 

showed that a set of option prices with the same maturity but with different exercise 

prices can be used to extract the entire probability distribution of the underlying asset 

at the maturity of the option. According to Jondeau et al (2007) the models for 

estimating RNDs can be divided into two main categories: structural and 

nonstructural. Structural approaches propose a full description for the stock price 

dynamics, but they are rarely used due to the large number of unknown parameters 

that should be estimated. Nonstructural approaches yield a description of the RND 

without completely describing the dynamic of price. The nonstructural models can be 

parametric, semiparametric and nonparametric. Parametric models propose a direct 

expression for the RND, without referring to any price dynamic. They include mixture 

of distributions and a wide collection of distributions allowing for higher moments, 

including Black-Sholes Merton (BSM) model, mixture of two log-normals (MLN) 

and generalized beta distribution (GB2). Semiparametric and nonparametric models 

propose some approximation of the true RND. Most commonly used semiparametric 

models include Edgeworth expansions and Hermite polynomials, while nonparametric 

models include spline methods, tree-based methods, maximum entropy principle and 

kernel regression that all rely on Shimko model. However, they do not try to give 

explicit form for the RND, and “the data is left to speak for itself”. Therefore, in this 

paper nonstructural models will be explained in detail and used in empirical research. 

Namely, representatives of parametric, semiparametric and nonparametric models, i.e. 

mixture of two log-normals (MLN), Edgeworth expansions (EE) and Shimko model 

(SM) respectively, are compared to find which one describes the “best” RND for 

prediction of ex ante moments of DAX index.  

Since there is no consensus in the literature about the “best” model for RND 

estimation, the goal of this study is to compare the performances of three fundamental 

models for option pricing. It should be noted that this paper is written as a part of a 

greater project and it is relying on findings of Arnerić et al (2015) where different 

parametric approaches are compared and tested within different maturity horizons. 

This paper uses the main findings of the previous paper, i.e. uses the best parametric 

approach in modelling RND and compares it to the most commonly used 

semiparametric and nonparametric models. Due to different features of proposed 

models, they are extremely sensitive to different maturities of call and put options on 

underlying asset. Therefore, the purpose of this paper is to investigate if forecasting 

ability between proposed nonstructural models differs significantly considering 

different maturity horizon. Hence, the present paper contributes to the existing 

literature in a several ways. Firstly, it reveals at which maturity horizon the prediction 

of RND is most accurate given by the “best” nonstructural model. Second, it 

introduces the Diebold-Mariano test for comparison of the RND estimators. Third, it 

covers the most recent period which have not been in the center of research interest. 

The research is conducted in order to extract the implied distribution from option 

prices using the best nonstructural model and consequently to explain the implications 

of movements in implied moments for market participants and public authorities. 

Therefore, investors are able to apply the chosen RND estimator and obtain the “most 

accurate” implied probability distribution.  

The remainder of the paper is organized as follows. Section 2 presents the 

literature review. Section 3 describes the methodology. Section 4 presents the data 



used in the empirical research, Section 5 presents obtained empirical results and 

discussion. Finally, some conclusions and directions for future research are provided 

in Section 6. 

Literature review 

 

Most commonly used approach for extraction of market expectations rely on Breeden 

and Litzenberger (1978) results and require the existence of a continuum of European 

options with the same time to maturity on underlying asset, spanning exercise prices 

from zero to infinity, and with these assumptions and in the absence of market 

frictions, it is possible to imply the underlying risk-neutral distribution (RND). 

Breeden and Litzenberger (1978) first showed how the second partial derivative of the 

call-pricing function with respect to the exercise price is directly proportional to the 

RND function. However, this method is based upon the assumption that there exist 

traded options for many strikes, which is not the case in practice since options 

contracts are only traded at discretely spaced time points. Because of that, some 

approximation for the second derivative is necessary and more than one implied 

distribution can be included depending on the approximation chosen (Gemmill and 

Saflekos, 2006). Shimko (1993) proposes an alternative approach by interpolating in 

the implied-volatility domain instead of the call-price domain. He begins by fitting a 

quadratic relationship between implied volatility and exercise price. The Black-

Scholes formula is then used to invert the smoothed volatilities into option prices. The 

main limitation of the above techniques is the need for a relatively wide range of 

exercise prices. This can be overcome by imposing some form of prior structure on 

the problem. One such prior is to assume a particular stochastic process for the price 

dynamics of the underlying asset. In other words, the basic probability distribution is 

log-normal, but it can jump up or down. This framework follows Ritchey (1990), who 

notes that a wide variety of shapes may be approximated with a mixture of log-normal 

distributions. 

 Since then, in order to overcome the disadvantages of previous models, various 

techniques, methods and approaches that put more structure into the option prices 

have been developed. Hence, various structural and nonstructural models have been 

developed and studied in the literature. Due to the large number of unknown 

parameters included, structural models are rarely used for RND estimation. 

Nonstructural models can be divided into three categories: parametric, semiparametric 

and nonparametric models. Through the literature inspection, there are papers 

regarding semiparametric and nonparametric approaches for estimating RND 

(Jackwerth and Rubinstein, 1996; Andersen and Wagner, 2002; Tavin, 2011; Smith, 

2012; Breeden and Litzenberger, 2014; Datta et al, 2014; Malz, 2014), some of them 

comparing parametric and nonparametric approaches (Bahra, 1997; Aparicio and 

Hodges, 1998; Figlewski, 2009; Mizrach, 2010) and only few are dealing with 

parametric approaches (Malz, 1997; Bookstaber and McDonald, 1987; Aguilar and 

Hördahl, 1999; Söderlind, 2000; Gemmill and Saflekos, 2000; Vähämaa, 2005; 

Cheng, 2010; Markose and Alentom, 2011; Grith and Krätschmer, 2011; Khrapov, 

2014; Arnerić et al, 2015). It should be noted that literature lacks papers comparing 

representatives of nonstructural models, especially in the sense of comparing those 

models and finding the “best” fit model for different maturity horizons. 

Jackwerth and Rubinstein (1996) derive underlying RND of European options on 

S&P 500 index by using a nonparametric approach. This is the method in which the 

risk-neutral probabilities are recovered from contemporaneous market prices of 

associated derivatives, and which makes no prespecification of the functional 



relations. The empirical research is based on database that contains all reported trades 

and quotes covering S&P European index options traded on CBOE, S&P 500 index 

futures traded on the CME, and intraday S&P 500 index levels from April 2, 1986, 

through December 31, 1993. A purpose of this article is to examine alternative 

specifications of the minimization criterion (other than quadratic) using historically 

observed option prices and to report and analyse the historical record of RNDs 

inferred from the nonparametric approach. The results identify a distinct change in 

shape between the precrash (log-normal) and the postcrash distributions (leprokurtosis 

and left-skewness), and also reveal that maximizing the smoothness of the resulting 

probability distribution is good objective for nonparametric methods. 

Bahra (1997) gives an extensive overview of previous literature on estimation of 

RNDs. Using nonstructural approaches, and considering both advantages and 

disadvantages of each approach, the author estimates RNDs for LIFFE index options 

for 2 dates in March 1996 with time to expiration in June 1996 (103 and 105 days to 

expiration), for three-month sterling interest rate for 2 dates in May 1995 with 

expiration date in September 1995 (133 and 135 days to expiration) and for 

Philadelphia Stock Exchange (PHLX) currency options. Although there is an 

enormous contribution of this paper in synthesising various models for RND 

estimation, they are not compared to each other to provide evidence of superiority of a 

chosen method. 

Aparicio and Hodges (1998) examine two alternative approaches to recovering the 

RND function from option prices. First approach is parametric which assumes that the 

future distribution of the underlying asset is GB2 distribution, and the second, 

nonparametric approach approximates the volatility smile using B-splines 

approximating functions and chain rule of differentiation. They use a sample of daily 

closing prices of the CME options on S&P 500 index future to estimate the implied 

volatility distributions and compare two different methods. The RNDs functions are 

calculated for September 1987 and September 1992 CME Future options data and two 

methods are compared by observing residuals between the observed implied 

volatilities and the estimated volatilities, which would indicate if there is a significant 

improvement in the goodness-of-fit of the nonparametric approach with respect to the 

parametric. The results show that nonparametric approach provides the best fit but 

satisfactory results can also be obtained with the GB2 approximation. Moreover, 

stability results reveal that the high level of negative autocorrelation of the innovation 

series obtained through the nonparametric approach may be an indication of 

overfitting the market data, picking up noise and pricing errors that later are reflected 

in the distributions. Parametric models with flexible distributions like GB2 model 

produce plausible distributions with the time series properties close to desirable 

random walk properties. 

Aguilar and Hördahl (1999) present examples of estimated implied distributions 

for interest rates (options on three-month Eurolira interest rate on 3 dates in 1996 and 

1997 with time to maturity of 77 days) and equities (Swedish OMX index on 4 dates 

in 1998 with time to maturity of 60 days) using a MLN method, and for currencies 

(Swedish krona –SEK/USD and SEK/DEM on 2 dates in 1998 and 1999 with one 

month to expiration) using Malz (1997) method. They conclude that implied 

probability distributions provide an indication of the market’s assessment concerning 

the uncertainty of future events, which vary substantially over time. The authors give 

an overview of parametric methods used to estimate RND for interest rates and 

equities (MLN) and for currencies (Malz) and show their good potential. However, it 

does not compare different nonstructural approaches. 



Söderlind (2000) study how market expectations about future UK monetary policy 

changed in period from June to November 1992 around events of ERM crisis. It 

extracts RNDs from daily option prices on the mark-pound exchange rate, 10-year 

sterling yield to maturity, 3-month sterling interest rate and 3-month mark interest 

rate, using MLN model and only arguing that it has to be better than BSM model, 

without referring to other nonstructural approaches. 

Gemmill and Saflekos (2000) use option prices to construct RND to prove whether 

they are useful in forecasting market movements and/or revealing the investor 

sentiment. They estimate the implied distribution using a MLN approach and test its 

one-day ahead forecasting performance, using data on LIFFE’s FTSE-100 index 

options from 1987 to 1997. The options used in this part of the analysis are chosen on 

one day per month (from the middle of the week) such that they have approximately 

45 days to maturity. They found that the MLN performs much better than BSM 

approach at fitting the observed option prices, by comparing their RMSE (root mean 

squared errors), but it is only marginally better at predicting out-of-sample prices. 

Moreover, the analysis of extraordinary periods confirms that the shape of implied 

distribution does not anticipate these events, it rather reflects their passing. They 

conclude that implied distribution reflects market sentiment, however, that sentiment 

has little forecasting ability. Moreover, they do not compare the performances of other 

nonstructural approaches themselves or regarding different maturity horizons. 

Andersen and Wagener (2002) extract RND from option prices by interpolating the 

Black-Scholes implied volatility smile, by fitting a smoothing spline of higher order 

polynomials with a relatively low number of knot points. They apply this to the 

LIFFE three-month Euribor futures option prices and calculate RNDs day by day for 

three months period from 20 March to 21 June 2001 and further analyse the impact of 

11 September attacks on the expectation of future Euribor interest rate. 

Vähämaa (2005) uses data on German government bond futures options to 

examine the behaviour of market expectations around monetary policy actions of the 

ECB and focuses on the asymmetries in bond market expectations, as measured by the 

skewness of option-implied probability distributions of future bond yields. By 

analysing the asymmetries in bond market expectations, this paper provides new 

evidence on how monetary policy affects financial markets. In this paper, option-

implied probability distributions are extracted based on a parametric approach, i.e. 

MLN. This approach may be considered theoretically more competent as it ensures 

proper behaviour of the tail probabilities. The empirical analysis in this paper is 

performed using daily settlement prices of options on short-term German government 

bond futures traded at Eurex. The bond underlying the futures contract is 

Bundesschatzanweisungen (Schatz), a notional German government bond with 6% 

coupon and maturity of 1.75–2.25 years. The settlement prices for the Schatz futures 

and futures options are obtained from Eurex. The sample period used in the analysis 

extends from July 1999 to July 2003. 

Jondeau et al (2007) give much newer overview of various methods for extracting 

RNDs using both structural and nonstructural methods, and parametric, 

semiparametric and nonparametric approaches. They also compare several techniques 

to estimate RNDs using data on CAC40 options. The first one is the numerical 

approximation of RND based on Breeden and Litzemberger (1978) approach, then 

with GB2 model, then using a MLN approach and finally using EE around the log-

normal distribution. All of them are compared to BSM. The first method gives 

unstable results, unlike three other that yield with good approximations indicating 

negative skewness and fat tails. The MLN approach provides the best fit measured by 



MSE (mean squared errors) and ARE (absolute relative errors). Although it uses 

different approaches and compares them, it does not provide any information about 

maturity of options and other information important for estimation purposes. 

Cheng (2010) uses double log-normal approach and multi log-normal approach to 

extract RNDs for various asset classes including commodities, S&P 500, Dow-Jones 

index, euro/dollar exchange rate and the US 10-year treasury note and for different 

maturities. Data is collected on March 24-25, 2010. Monte Carlo study suggests that 

the multi log-normal approach outperforms the double log-normal using SSE to 

compare them. The results indicate that quadruple model is better than triple, which is 

in most cases better than double log-normal distribution. However, there might be 

problems of finding optimal solution for models with large number of parameters and 

one may consider choosing more parsimonious model. 

Mizrach (2010) examines a variety of methods for extracting implied probability 

distributions from option prices and the underlying asset. The paper first explores 

nonparametric procedures for reconstructing densities directly from options market 

data. It then considers local volatility functions, both through implied volatility trees 

and volatility interpolation. It then turns to alternative specifications of the stochastic 

process for the underlying. This paper estimates a MLN, applies it to exchange rate 

data (US Dollar/British Pound (US$/BP) option which trades on the Philadelphia 

exchange from 1992 to 1993), and illustrate how to conduct forecast comparisons. 

Finally, this paper turns to the estimation of jump risk by extracting bipower 

variation. 

Tavin (2011) presents how to obtain the RND of an underlying asset price as a 

function of its option implied volatility smile. It derives a known closed form 

nonparametric expression for the density and decompose it into a sum of log-normal 

and adjustment terms. By analysing this decomposition this paper also derives two 

no-arbitrage conditions on the volatility smile. The methodology is applied first to the 

pricing of a portfolio of digital options in a fully smile-consistent way. It is then 

applied to the fitting of a parametric distribution for log-return modelling, the Normal 

Inverse Gaussian. The underlying asset is DJ Eurostoxx 50, it is an equity index 

composed of 50 large Eurozone companies, and the date is 20.12.2007. 

Markose and Alentom (2011) argue that the use of the Generalized Extreme Value 

(GEV) distribution to model the RND provides a flexible framework that captures the 

negative skewness and excess kurtosis of returns, and also delivers the market implied 

tail index. The GEV based option pricing model successfully removes the in-sample 

pricing bias of the BSM model, and also shows greater out of sample pricing 

accuracy, while requiring the estimation of only two parameters. They explain how 

the implied tail index is efficacious at modelling the fat tailed behaviour and negative 

skewness of the implied RND functions, particularly around crisis events. The data 

used in this study are the daily settlement prices of the FTSE 100 index call and put 

options published by the London International Financial Futures and Options 

Exchange (LIFFE). The period of study is from 2-Jan-1997 to 1-Jun-2009. 

Grith and Krätschmer (2011) provide an overview of parametric models for RND 

estimation and uses paired European call options written on the underlying DAX 

index which mature in one month (21 days) and strike prices observed on 21.1.2004. 

Parametric models include BSM, MLN and generalized gama distribution, however 

they do not provide the conclusion about the best fit model and do not compare 

different nonstructural approaches. 

Datta et al (2014) investigate the informational content of option-implied 

probability density functions (PDFs) for the future price of oil. They use daily data on 



West Texas Intermediate (WTI) crude oil futures and options on WTI futures traded 

on New York Mercantile Exchange between January 2000 and December 2013, 

around episodes of high geopolitical tensions, oil disruptions and macroeconomic data 

releases, to explore the extent to which oil price movements are expected or not, and 

whether agents believe these movements are persistent or temporary. Using a 

semiparametric variant of the methodology of Breeden and Litzenberg (1978) they 

investigate the fit and smoothness of distributions derived from alternative PDF 

estimation methods and develop a set of robust summary statistics. They implement 

four options-implied volatility curve-fitting methods: cubic spline, fourth-order spline, 

smoothing spline and one knot spline, and the results are in favour of the smoothing 

spline method. The other problem is to estimate the tail of the distribution, and the 

results are in favour of extrapolating the implied volatility curve using first order 

polynomial. 

Malz (2014) describes a method for computing RNDs based on the option-implied 

volatility smile. The aim is to reduce complexity and provide guidance through the 

estimation process. The technique is robust and avoids violations of option no-

arbitrage restrictions that can lead to negative probabilities and other implausible 

results. Paper provides examples for equities (3-month options on the S&P 500 index, 

as of 21.12.2012), foreign exchange (1-month options on EUR-USD, as of 

31.12.2012), and long-term interest rates (2-year options on 10-year swaps for 

1.5.2013 and 5.9.2013). 

Given a cross-section of daily option prices, Khrapov (2014) finds the RNDs, or 

equivalently the set of parameters, that minimize the option pricing errors using a 

MLN and a GB2 distributions. This estimation is repeated every Wednesday from 

10.1.1996 to 25.7.2012 for VIX options with maturities up to one year to collect the 

time series of density parameters. It turns out that these parameters are highly 

predictable. The author exploits this predictability by fitting a simplest autoregressive 

model to each series of parameters and then forecasts these parameters out-of-sample 

and computes option prices corresponding to the forecast of the RND. The results are 

compared using RMSE and IVRMSE for different maturities. It can be concluded that 

MLN always outperforms the BSM model, whereas for GB2 nothing is concluded. 

Arnerić et al (2015) investigate which of the parametric models for extracting 

RND, i.e. BSM, MLN and GB2 model, gives the best fit. The empirical findings 

indicate that the best fit is obtained for short maturity horizon, but when comparing 

models in short-run, the MLN gives statistically significant smaller MSE.  

The abovementioned papers provide an extensive literature review, detailed 

description of the methods chosen and clear start for further investigation. Some of 

the papers only give a theoretical proof of advantages of one over the other method; 

most of them do not even compare the models or do it improperly, even sometimes 

giving an advantage to less parsimonious models. Moreover, different maturities are 

taken into account in some of the papers, but nothing is concluded regarding that with 

regard to different non-structural models. Since previous researches only conclude 

that none of the nonstructural model is clearly superior to the others, different 

approach is needed. Hence, this paper relies on findings of Arnerić et al (2015) where 

different parametric approaches are compared and tested within different maturity 

horizons, however in this paper different nonstructural approaches are explained, 

analysed and compared for extracting implied RNDs. Moreover, different models are 

compared regarding different maturities in order to conclude which method has the 

best forecasting ability in different time horizons. 

 



Methodology  

 

In this paper nonstructural models are used to infer the RND from option prices: 

mixture of two log-normals (MLN), Edgeworth expansions (EE) and Shimko’s model 

(SM), i.e. representatives of parametric, semiparametric and nonparametric models 

respectively. Structural models are not observed as they are rarely used for estimating 

RND’s due to the large number of unknown parameters.  

The option pricing model based on the log-normal assumption with constant 

variance across exercise prices and across maturities has been developed by Black and 

Scholes (1973) and Merton (1973). Log-normal assumption originates from a 

geometric Brownian motion (GBM), which means that the price of the underlying 

asset is log-normally distributed variable, and its returns are normally distributed. 

Based on these assumptions the price of a European call option can be written as: 
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The price of a European put option can be written as: 
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or based on put-call parity, if the price of call option is known, as: 
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and where c  is the price of European call option, p is the price of European put 

option, S  is the price of the underlying asset, X  is the strike price or the exercise 

price, r  is the risk-free interest rate,  T t  is the time to expiration date,   is the 

standard deviation of returns, i.e. volatility of the underlying asset, and  N   denotes 

the standard cumulative normal distribution. Therefore, the price of the call option is a 

function of five variables, whose values are observable, except for the volatility.  

To be able to price an option it is required to estimate the future value of volatility. 

It can be extracted from the Black-Scholes formula if the price of the option on 

market is observed, and it is known as implied volatility. In the same way as the 

implied volatility can be found from the option prices, the whole distribution of the 

underlying asset can also be estimated from option prices, and it is known as implied 

probability distribution. From implied probability distribution the moments that 



describe different characteristics of the distribution can be computed. These moments 

include mean (expectation), standard deviation (variance), skewness and kurtosis. 

If a call option is      
0
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Litzenberger (1987), the risk neutral density is given by differentiating this equation 

twice, with respect to exercise price X 
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Using simultaneously observed call and put option prices with the same maturity 

but with different exercise prices, the parameter vector   can be estimated by 

minimising the sum of squared deviations between the observed (
* *,j jc p ) and 

theoretical prices ( ,j jc p ) as: 
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The log-normal assumption does not hold in practice, i.e. implied volatilities of 

options on different exercise prices are not the same, nor are volatility smiles for 

different maturities. Therefore, it is required to use more general option pricing model 

than BSM. One alternative is to use the mixture of log-normal (MLN) densities, since 

it can be seen as an extension of the BSM model that uses only one log-normal 

density. The prices of European call and put options at time t can be written as: 
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where  r T t
e
 

 is the discount factor based on risk-free interest rate r and  Tq S  

denotes the risk-neutral density (RND) function for the price of the underlying asset 

on the expiration date T. From the previous equations it can be seen that using 

observed option prices, one should be able to extract the markets’ estimate of the 

probability distribution  Tq S . It should be noted that, in theory, any density 

functional form  Tq S  can be used in equations (7) and (8), however this paper 

assumes that a mixture of two log-normal distributions is suitable to describe the 

underlying distribution for  TS : 
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where 
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10) 

 

and where   is the weighting parameter that determines the relative influence of two 

log-normal distributions on the terminal distribution. Parameters 
i  and 

i  indicate 

location and dispersion for each log-normal distribution, which determine the mean 

and variance of the distributions according to: 
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and 
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Inserting equations (9) and (10) into equations (7) and (8), the values of the call 

and put options can be expressed as: 
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Using at least five simultaneously observed call and put option prices with the 

same maturity but with different exercise prices, the five parameters (

1 1 2 2,  ,  ,  ,       ) can be estimated by minimising the sum of squared deviations 

between the observed prices (
* *,j jc p ) and theoretical prices ( ,j jc p ) as: 
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Moreover, according to Bahra (1997), additional information can be exploited by 

including the forward price as an additional variable in the minimisation problem, 

where the forward price is the mean of the risk-neutral distribution, given by: 
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This yields with: 
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subject to 
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18) 

 

Since evaluating equations (13) and (14) is computationally demanding due to the 

definite integral incorporated in these equations, the minimisation problem in (17) can 

be solved using closed-form solutions to equations (13) and (14) given as: 
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The closed-form solution uses the cumulative normal distribution rather than the 

log-normal density function which eases the numerical computation. Based on Liu et 

al (2004) the standard deviation, skewness and kurtosis of a mixture can be derived 

from: 
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The other alternative is to use Edgeworth expansion (EE) method developed by 

Jarrow and Rudd (1982), whose idea is to capture deviations from log-normality by an 

Edgeworth expansion of the RND  |Tq S   around the log-normal density. The 

expansion approach has the advantage that the approximation, by involving 

parameters that can vary, allows generating more functions. It is a representative of 

semiparametric approach in modelling RND (Jondeau et al, 2007). 

Let Q be the cumulative distribution function (cdf) of a random variable TS  and q 

its density. Characteristic function of S is defined as    isu

Q u e q s ds   . If moments 



of TS  exist up to order n, then cumulants of the distribution Q, denoted 
,Q j  exist, 

implicitly defined by the expansion: 
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Thus, if the characteristic function  Q   is known, by taking an expansion of its 

logarithm around u=0, it is possible to obtain the cumulants. There is the following 

relationship between the cumulants and moments up to the fourth order, i.e. first four 

cumulants are equivalent to mean, variance, skewness and kurtosis respectively. 
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EE of the fourth order for the true probability distribution Q around the log-normal 

cdf L can be written, after imposing that the first moment of the approximating and 

true density are equal, (
,1 ,1Q L  ), and by denoting densities with small letters: 
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where  s  captures terms neglected in the expansion. The various terms in the 

expansion correspond to adjustments of the variance, skewness and kurtosis, and the 

interpretation of the expansion is similar to a Taylor expansion. Moreover, under this 

approximated density, the price of a European call option with strike K can be 

approximated as in equation (26), where the first term is the BSM formula: 
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Additionally, the log-normal distribution has the following property: 
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We deduce for the call option price: 
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For the log-normal density, the first cumulants are given by: 
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where  
2 1 2

1e     and where the first relation follows from risk-neutral valuation. 

Additionally, second moment can be identified by imposing 
,2 ,2Q L  . Rather than 

estimating 
,3Q  and 

,4Q  it is possible to estimate standardized skewness and kurtosis 

(
,1Q  and 

,2Q  respectively), which are defined as: 
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These expressions also hold for the log-normal density, and therefore, skewness 

and kurtosis of the log-normal density can be derived from the above cumulants. With 

the assumption of equality of the second cumulants for the approximating and the true 

distribution, it follows: 
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Using this expression, it is easy to estimate with nonlinear least squares the implied 

volatility ( 2 ), skewness (
,1Q ) and kurtosis (

,2Q ). The RND can be obtained after 

twice differentiating equation (31) with respect to K and then evaluation over TS : 

 

     
 

 
 3 2 23 4

,2 ,2

,1 ,1 ,2 ,23 46 24

L LT T

T T Q L Q L

T T

d l S d l S
q S l S

dS dS

 
        , 

(

32) 

 

where the partial derivative can be computed iteratively using: 
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and where    2log 2Tm S r     . Those computations indicate that the RND 

in the Edgeworth case will be a polynomial whose coefficients directly command the 

skewness and kurtosis of the RND. 

 

Nonparametric models do not try to give an explicit form of the RND. 

Representative of nonparametric model is Shimko model (SM). Shimko (1993) 

propose to implement the results of Breeden and Litzemberger (1978) directly after a 

preliminary smoothing of the volatility smile. Since a direct estimation leads to 

numerically unstable results, the idea of SM is to summarize the information 

contained in the volatility smile via a more or less sophisticated polynomial, for 

instance  K  a function of strike price K and then to use this expression to evaluate 

the density. In other words, the function  K  is fitted to the various volatilities. 

Outside the range of quoted strikes, the volatility is supposed to be constant. Focusing 

on a call option, formally it is written that     , , , , , , , ,t tC S K r C S K r K    . 

The first idea (Shimko, 1993) is to use a quadratic polynomial for  K . 

Formally,  
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where n represents the number of observed prices. The parameters of this polynomial 

can be easily estimated using a nonlinear least square regression. The RND is given 

by: 
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where the function  1
A

 is the indicator function taking the value 1 if A is true. The 

first- and second-order derivatives of 1d  and 2d  are given by: 
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(36) 

The characteristics of nonparametric approaches is their independence of the 

assumptions, which is viewed as their great strength and a weakness. It is a strength 

since it induces the structure of the problem from the data, rather than presuming 

complex models from which prices are deduced. However, there is no guarantee that 

the prices obtained from nonparametric models are going to be in accordance with 

rational pricing. Particularly in Shimko model it is not rare to obtain negative 

probabilities. Moreover, nonparametric models are found to be data-intensive, 

requiring large datasets and cannot be practically implementable due to limited 

number of quoted bid and ask option prices. 

 

Data analysis 

 

Data sets includes averages of the last bid and the last ask options prices, both for 

calls and puts on the same strikes, in period from July 2014 to July 2015. However, 

the selection of dates to include is not set by chance. After the observation of DAX 

index movements (Figure 1), and before the research is conducted, it was important to 

select dates at which the estimation would be performed. Dates around peeks and 

bottoms are selected. Moreover, each selected date corresponds to the third Friday of 

each month, i.e. expiration day of option prices. In the observed period from July 

2014 to July 2015, DAX index was on average 10412.94 points, reaching its 

minimum value of 8571.95 in October 2014, and its maximum value of 12374.73 in 

April 2015. Time series of DAX index prices is presented by Figure 1. Moreover, the 

RND were calculated for one and two months in advance, i.e. time to expiration is 

both 28 (and 35) and 63 (or 56) days depending on number of days in a month. 

Therefore, RNDs are calculated for 11 months, for 2 different maturity horizons and 

with 3 different nonstructural models, yielding with 66 different RNDs. Three models 

will be compared to conclude which method has the best forecasting accuracy in 

different time horizons. 

It should be noted that when estimating the implied probability distribution, it is 

important to select the type of option prices. In empirical researches, there are often 



used prices collected at the end of the trading day or the average of the bid and ask 

price. Moreover, it is common to use the out-of-the money options, because of their 

greater liquidity. The same is done in this research. The research is conducted in “R” 

software using “RND” package. 

 

 
Figure 1 - Closing prices of DAX index from July, 1st 2014 to July, 1st 2015 

Source: http://finance.yahoo.com/q/hp?s=%5EGDAXI+Historical+Prices [25.07.2015] 

 

Empirical results 

 

In this paper nonstructural models are used to infer the RND from option prices: 

mixture of two log-normals (MLN), Edgeworth expansions (EE) and Shimko’s model 

(SM). Since these models are representatives of parametric, semiparametric and 

nonparametric models respectively, estimated parameters that have an economic 

interpretation and significance can be obtained only for MLN model. They are not 

presented and are available from the authors upon request.  

Tables 1 - 3 present ex ante moments extracted from each RND, i.e. mean  , 

standard deviation  , skewness 3  and kurtosis 4  of DAX index prices at chosen 

expiration dates, i.e. 17th of October 2014, 16th of January 2015 and 19th of June 2015 

respectively, and for 1 month and 2 months maturity horizons. In each Table 1 - 3 six 

RNDs have been estimated based on two different maturity horizons and using three 

nonstructural models. The same is done for 8 more expiration dates, but the results are 

not presented here due to the lack of space (results are available upon request). 

However, in Tables 1 - 3, and Figures 2 - 4 one can notice that there are differences 

between extracted three risk-neutral densities. Therefore, the purpose of this paper is 

to investigate which model and at which maturity horizon fits the future distribution 

of DAX index most accurately. As a comparison criterion, mean square error (MSE) 

is used. MSE was calculated as the mean square difference between observed call and 

put option prices and expected (theoretical) call and put option prices obtained from 

three nonstrustural models for the same strikes. Furthermore, Diebold-Mariano (DM) 

test is used to test which model has lower MSE. Model that has significantly lower 

MSE is considered as most appropriate. 

Firstly, the testing procedure is computed to compare the performance of RND’s 

extracted between 1 month and 2 months maturity horizons within each model. The 

results indicate that the short-run forecasts yield better results with smaller MSE, i.e. 

within each estimated model (MLN, EE and SM) the null hypothesis of DM test can 
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be rejected in favour of one-sided alternative. The null hypothesis is that the two 

models have the same forecast accuracy (Diebold and Mariano, 1995). 

 
Table 1 - RND’s for 1 month and 2 months maturity horizons with ex ante moments extracted 

at expiration date 17.10.2014. 

Model MLN EE SM 

(T-t) 1m 2m 1m 2m 1m 2m 

µ 9851.40 9048.34 9518.26 9041.60 9918.03 9256.14 

σ 291.19 428.89 483.11 344.16 237.99 386.99 

α3 -0.06 0.62 0.12 -0.15 -0.06 -0.04 

α4 2.94 2.87 2.14 2.12 2.66 2.59 

MSE 192.00 3472.00 7956.00 16500.00 741.80 6904.00 

DM test -10.16*** -5.35*** -3.93*** 

MLN     -5.90***   -5.13***   

EE         -5.64***   
Note: ***, **, * represent significance level of 1%, 5% and 10% at which the null hypothesis 

of Diebold-Mariano test (DM) is rejected. 

 

  
Figure 2 - Estimated RNDs for 1 month and 2 months maturity horizons at 17.10.2014. 

 

Secondly, three proposed models are used for pairwise comparison (MLN vs. EE, 

MLN vs. SM and EE vs. SM) only in short-run as previously has been concluded that 

the short-run forecasts yield better results with smaller MSE. The results show 

superiority of MLN model in short run against EE and SM. The null hypothesis of 

DM test can be rejected, i.e. the short-run MLN forecasts have lower MSE than short-

run forecasts of both EE and SM approaches. The same results were obtained and 

confirmed for 8 more expiration dates, but not presented here due to the lack of space. 

Moreover, both EE and SM model show odd results, yielding in some cases with 

negative probabilities and rather divergent expected call and put prices (the results are 

available from the authors upon request) as indicated already in the literature (Bahra, 

1997) as a downside of these models. 

 
Table 2 - RND’s for 1 month and 2 months maturity horizons with ex ante moments extracted 

at expiration date 16.01.2015. 

Model MLN EE SM 

(T-t) 1m 2m 1m 2m 1m 2m 

µ 9784.38 9598.07 9579.27 9402.93 9906.40 9686.48 

σ 480.90 416.97 531.29 529.60 379.49 389.00 



α3 -0.86 -1.24 -0.28 -0.29 -0.19 -0.38 

α4 3.90 4.38 2.55 2.27 2.61 2.93 

MSE 112.10 757.30 563.90 2151.00 111.40 994.90 

DM test -1.58* -2.09* -1.34* 

MLN     -10.50***   -0.05   

EE         -9.68***   
Note: ***, **, * represent significance level of 1%, 5% and 10% at which the null hypothesis 

of Diebold-Mariano test (DM) is rejected. 

 

  
Figure 3 - Estimated RNDs for 1 month and 2 months maturity horizons at 16.01.2015. 

Table 3 - RND’s parameters estimates for 1 month and 2 months maturity horizons with ex 

ante moments extracted at expiration date 19.06.2015. 

Model MLN EE SM 

(T-t) 1m 2m 1m 2m 1m 2m 

µ 11446.08 11667.88 11024.88 10821.68 11568.13 11863.52 

σ 752.90 874.94 905.86 1226.60 493.04 675.53 

α3 -0.60 -0.92 -0.26 -0.08 0.07 -0.33 

α4 3.25 4.10 2.39 1.87 2.63 2.57 

MSE 24.18 148.80 5620.00 41010.00 518.40 1543.00 

DM test -9.33*** -9.59*** -7.18*** 

MLN     -11.53***   -12.22***   

EE         -10.60***   
Note: ***, **, * represent significance level of 1%, 5% and 10% at which the null hypothesis 

of Diebold-Mariano test (DM) is rejected. 

 

  

Figure 4 - Estimated RNDs for 1 month and 2 months maturity horizons at 19.06.2015. 

 



Changes in the implied moments, extracted from RND’s, between two successive 

time points should provide valuable information of changes in the market’s 

assessment of future developments in the underlying asset. According to the MLN 

model that has most accurate predictive ability within one-month maturity horizon, 

three RND’s are compared to describe these changes (Figure 5). For ease 

interpretation of changes in the market expectations of DAX index an implied (ex 

ante) moments at three chosen expiration dates are also presented in Table 4. 

 
Table 4 - Implied (ex ante) moments extracted from estimated RND’s at three chosen 

expiration dates (MLN model with maturity horizon of one month) 

Implied moments 17.10.2014 16.01.2015 19.06.2015 

µ 9851.40 9784.38 11446.08 

σ 431.80 480.90 752.90 

α3 1.39 -0.86 -0.60 

α4 2.34 3.90 3.25 

 

 
Figure 5 - RNDs at 3 expiration dates based on MLN model (maturity horizon 1m) 

 

On third Friday in September, 2014 the value of DAX index was still recovering 

from its’ plunge in August. Therefore, the market sentiment was optimistic at 17th of 

October, 2014 yielding with higher expected value of DAX index one month ahead, 

lower standard deviation (volatility) as an indication of smaller uncertainty and 

positive skewness which indicates that market perceives the probability of positive 

outcomes to be higher than the probability of negative outcomes. For expiration date 

16th of January, 2015 results indicate similar value of the implied mean but higher 

implied standard deviation (volatility) with implied asymmetry concentrated on the 

left tail of distribution ( 03  ). As implied kurtosis is increasing a distribution has 

heavier tails (Figure 5). It is important to note that the kurtosis is a measure of fat tails 

of the distribution, i.e. leptokurtic distribution has fat-tails ( 34  ) regarding the 

curvature of distribution. The same changes in the implied moments can be notice at 

expiration date on 19th of June, 2015 which means that the value of DAX index is at 

the higher level with higher implied volatility. Distribution is also more negatively 

skewed on the left tail then on the right tail even both tails are heavier compared to 

the implied distribution at expiration date from 16th of January, 2015. This reveals that 

the market participants perceive great uncertainty with the development of the DAX 
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index during the life of the options with higher probability of negative outcomes, i.e. 

the market sentiment was pessimistic. 

 Figure 6 presents all implied moments, i.e. mean, standard deviation, skewness and 

kurtosis for all expiration dates using MLN model for maturity horizon of one month. 

Expected values of DAX index move along with the observed values of DAX index 

(Figure 1). Standard deviation increases as the expected value increases, indicating 

lower risk in the beginning of the observed period and higher associated risk in the 

latter periods. Asymmetry is on average negative, indicating that market perceives the 

probability of negative outcomes to be higher than the probability of positive 

outcomes in the selected period. Moreover, leptokurosis and fat-taildness is observed 

in majority expiration dates of the sample period. Therefore, the extracted implied 

distribution reveals market sentiment, however it does not anticipate movements of 

DAX index, it rather moves along with it. 

 

  

  

Figure 6 – Implied moments at all expiration dates based on MLN model for one-month 

maturity horizon 

 

Conclusion 

 

In this paper three nonstructural approaches for estimation of risk neutral density 

distribution, mixture of two log-normals, Edgeworth expansion around the log-

normal distribution and Shimko model, which are representatives of parametric, 

semiparametric and nonparametric approaches respectively, are explained, estimated 

and compared using one-year data for options on DAX index. All three approaches 

have both their advantages and disadvantages. However, previous researches reveal 

that none of the approaches is clearly superior to the others. Therefore, this research is 

conducted in order to compare the three selected models in their forecasting ability 

and within the models the focus is put on comparison regarding different maturity 

horizons.  



The results reveal that no matter which nonstructural model is used, all of them give 

better short-term forecasts. In pairwise comparison for short-term prediction, mixture 

of two log-normals approach is superior to the others according to the mean squared 

errors and Diebold Mariano test. Moreover, MLN model has proven to be very 

flexible, which means that it is possible to obtain a wide variety of different implied 

distributions, and therefore it can capture commonly observed characteristics of 

financial assets, such as asymmetries and “fat-tails” in implied probability 

distribution. The results also reveal how the implied moments and the RND function 

itself respond to the arrival of new information and how market assesses risk over 

time. Changes in the implied moments in observed sample period reveal that the value 

of DAX index is at the higher level with higher implied volatility and that implied 

(risk-neutral) distribution is more negatively skewed on the left tail then on the right 

tail even both tails are heavier compared to the implied distribution at previous 

expiration dates. Moreover, when the underlying index moves, the RND not only 

moves along with the index, but it also changes shape. Although the extracted implied 

distribution reveals market sentiment, it does not anticipate movements of DAX 

index.  

Since, the value of true variance, skewness and kurtosis are unknown to us, i.e. 

cannot be observed, these implied higher order moments can only be compared with 

their realized counterparts. That would be worth for further research which requires 

intraday observations, i.e. high frequency data. Moreover, different methods can be 

compared within different markets since they differ in liquidity and number of quoted 

bid and ask option prices. Therefore. development of option trading on emerging 

markets can be viewed as a new niche in modeling market expectations. 
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